# Reconnaissance of Damage Due to Hurricanes Katrina and Rita

Physical Security & Systems Interagency Working Group March 24, 2006

Stephen A. Cauffman
Leader, Structures Group
Building and Fire Research Laboratory
National Institute of Standards and Technology
cauffman@nist.gov



### **Background**

- Hurricanes Katrina and Rita caused extensive loss to physical structures (major buildings, infrastructure, residential structures) over a large geographic area
- Hurricane Katrina
  - Number of deaths: ~1300
  - Insured loss estimates: \$40-60 billion
- Hurricane Rita
  - Number of deaths: 119
  - Insured loss estimates: ~\$4.7 billion
- Damage to structures resulted from:
  - Extreme winds and wind borne debris
  - Storm surge and surge-borne debris
  - Flooding



#### **The Economic Context**

- Total economic losses due to Hurricane Katrina expected to be at least \$125 billion, including:
  - Tourism losses
  - Costs of repairs to and rebuilding of homes, businesses, roads, bridges, and other infrastructure
  - Lost income of people whose place of employment has closed
- Federal investment of ranging \$200K to \$400K for each of roughly 500,000 displaced families.
- Hurricane Katrina was the deadliest hurricane to strike the United States since 1928.
- Seven of the 10 most expensive hurricanes in U.S. history occurred in the 14 months from August 2004 to October 2005.
- Hurricane Katrina appears to have destroyed 10 times as many homes as Hurricane Andrew in 1992 or the 4 storms to hit Florida and the Southeast in 2004.
- Hurricane Katrina caused \$44 billion in flood and storm surge damage, most of it uninsured, 88% in Louisiana.



## **NIST Pre-Reconnaissance Deployments**

- NIST roofing materials expert deployed with Roofing Industry Committee on Weathering Issues (RICOWI) Sept. 6-10, 2005.
  - Deployment focused on area between Bay St. Louis, MS and Pascagoula, MS.
  - Team conducted reconnaissance of roofing damage to essential facilities, schools, hotels, and residences.
- Four NIST structural engineers deployed with the FEMA Mitigation Assessment Team (MAT) Sept. 26-Oct. 1, 2005.
  - NIST staff operated independently but in cooperation with FEMA MAT.
  - Deployment focused on Mississippi Gulf Coast.
  - Team coordinated with US Army Corps of Engineers to visit levee breaches in New Orleans.



### **Scope of NIST Reconnaissance**

- NIST contracted with the Applied Technology Council (ATC) to assemble a team of experts to augment NIST expertise
- A total of 26 experts were assembled and organized into three teams to conduct field reconnaissance in:
  - Mississippi Gulf Coast (Hurricane Katrina) Oct. 17-21, 2005
  - New Orleans (Hurricane Katrina) Oct. 17-21, 2005
  - Southeast Texas (Hurricane Rita) Oct. 10-14, 2005
- Each of the three teams was further subdivided to focus on major buildings, infrastructure, residential structures



## **Organizations Participating in NIST Team**

- Federal agencies
  - National Institute of Standards and Technology
  - Federal Highway Administration
  - U.S. Army Corps of Engineers

#### Private Sector Organizations

- Applied Technology Council
- Amtech Roofing Consultants, Inc.
- Applied Residential Engineering Services
- ImageCat, Inc.
- International Code Council, Inc.
- Scawthorn Porter Associates, LLC
- Shiner Moseley and Associates, Inc.
- Smith & Huston, Inc.

#### Academic and Research Institutions

- National Research Council, Canada
- Texas Tech University
- University at Buffalo, Multidisciplinary Center for Earthquake Engineering Research
- University of Puerto Rico



### **Objectives**

- Collect and analyze:
  - Perishable field data (e.g., first-hand observations, photographic data) on performance of physical structures.
  - Environmental data on wind speed, storm surge, and flooding, and relate environmental data to observed structural damage.
- Review and analyze relevant data collected by other sources (e.g., government agencies, academic and research institutions, industry groups).
- Document field observations, environmental conditions, and data gathered from other sources, and make recommendations for:
  - Repair and reconstruction in the devastated regions.
  - Improving building codes, standards, and practices.
  - Further study of structures or classes of structures that warrant detailed performance assessments.



#### **Coordination with Other Teams**

- FEMA Mitigation Assessment Team
  - Damage reconnaissance with focus on mitigation of risks in new or replacement buildings in hurricane-affected areas
  - NIST coordinated pre-reconnaissance with FEMA MAT
- U.S. Army Corps of Engineers
  - Focus on performance of flood control system in New Orleans
  - USACE staff participating on NIST reconnaissance and providing access to data on flood protection system
- Federal Highway Administration
  - Focus on reconnaissance of highway structures
  - Two FHWA staff participating on NIST reconnaissance
- National Science Foundation
  - Two NSF-funded researchers participating on NIST reconnaissance
  - Data from NSF-funded reconnaissance reviewed as part of NIST effort



### **Environmental Conditions – Wind Speed Data**





•Wind speeds diminish rapidly as hurricane passes over land.



3-s gust speeds are 20 to 25 percent greater than the 1 min averages shown

### **Storm Surge**

- Hurricane Katrina
  - 24'- 26' above Mean Sea Level at east end of Biloxi, MS
  - 30'- 35' in Pass Christian-Bay St Louis-Waveland, MS
  - 13' at Mobile, AL
  - Exceeded Hurricane Camille (1969) up to 12' higher
- Hurricane Rita
  - Approximately 6' storm surge measured in Sabine Pass, TX
  - 15' storm surge in Holly Beach, LA
  - Cameron, LA devastated by storm surge



## **New Orleans Flooding**

- Major levee breaches in 3 canals
- 80 sq mi, 250,000 acre-feet of water
- 100,000 homes, much of downtown flooded
- Geotechnical movement implicated
- Peak flood depth ~2 ft higher than shown on 2 Sep map
- Many major buildings have basements w/critical equipment, etc.
- Humidity, standing water, and no air conditioning aggravated mold damage



**Credit: USGS** 



# Flooding from Hurricane Rita

#### Landfall:

September 24 ~15ft storm surge





http://www.nasa.gov/vision/earth/lookingatearth/h2005\_rita.html

### **High-Velocity Water Due to Levee Breach**

#### 17th St Canal Outfall Canal

- Sliding failure of floodwall
- Failure is believed to be due to loss of soil strength resulting from saturation (seepage under sheetpile).
- Overtopping was not believed to occur at this location.





Porter for MCEER



#### **London Ave Canal Levee Breach**





- Lateral displacement of floodwall due to loss of soil strength on protected side.
- Saturation of soil due to seepage beneath sheetpile.
- Overtopping not believed to have occurred at this location.



# Scour Behind Levee at Entergy Michaud Power Plant



- Evidence of overtopping at this location.
- Scour on protected side of levee due to overtopping.
- Floodwall remained in place.





#### **Inner Harbor Navigation Canal (Lower Ninth Ward)**





 Overturning failure of floodwall due to overtopping and scour on protected side of levee.



## **Window Breakage from Windborne Debris**

Aggregate surface roofs on adjacent buildings were sources of wind borne debris.









## **Building Envelope Failures Due to Wind**

- Metal roof and wall cladding
- Brick veneer









#### **Transmission Towers**

- ~150 towers, steel poles lost
- Many cascade failures
- Failures caused by wind



230kV line over Highway 73



138kV line over I-10





#### **Distribution Poles**

~600,000 poles lost due to wind









#### **Communication Towers/Failures Due to Wind**



Cell tower failure, Route 82, coastal LA



Sabine Pass tower failure



Orange cell tower failure



#### **Oil Refineries & Chemical Plants**

Cladding damage to towers and tanks due to wind.





Flare tower failure, Orange





#### **URM Wall Collapse in Area Exposed to Water Pressure**



**Venetian Isles fire station** 



# Reinforced Masonry Wall Damage Due to Water Velocity



Grouted, reinforced masonry wall 20 ft from seawall. Short lap splice observed at fracture, consequent frame collapse



## **Storm Surge Damage on SW Louisiana Coast**



Damaged school recreational facility, Cameron



Hibernia Bank building, Cameron



**Damaged strip mall, Creole** 



## Storm Surge Damage, Holly Beach, LA



Before Rita



By Athur Belata / courtery USAC



After Rita





#### Casino Barge Aground in Biloxi Due to Storm Surge





## U.S. Highway 90 Bridge at Biloxi

• Failure due to storm surge.





## **Major Findings (1)**

- Storm surge was the dominant cause of damage in coastal areas and in New Orleans.
  - Storm surge heights exceeded historical records in general.
  - Levee breaches in New Orleans different failure modes depending on location.
  - Significant damage to residential structures in coastal areas and in New Orleans.
  - Failure of bridges in coastal areas due to uplift and lateral forces displacing bridge decks.
  - Flood damage to backup generators and building equipment located at or below grade.
  - Storm surge not currently considered as a design load.



## **Major Findings (2)**

- Wind and wind-borne debris was the dominant cause of damage away from immediate coastal areas.
  - Significant damage to power distribution system; communications systems.
  - Major buildings suffered damage to glazing due to wind borne debris.
  - Wind driven rain through walls and windows and water ingress through roof vents and wind-damaged roofing systems caused significant damage to major buildings.



## **Major Findings (3)**

- Limitations of Saffir-Simpson Hurricane Intensity Scale
  - Saffir-Simpson scale used in forecasting and evacuation decision making.
  - Hurricane intensity based on measured wind speed;
     storm surge not considered.
  - Hurricane Katrina was a Category 3 storm at landfall (it had been a Category 5 storm until 18 hours before landfall), but had storm heights consistent with Category 5 storm.
  - Storm surge dissipates much more slowly than wind speed; not accounted for in hurricane intensity scale.



## **Issues – Major Buildings**

- Rooftop construction aggregate surfaces, screen walls and other materials – source of wind-borne debris.
- Building envelope construction rain water ingress, windborne debris.
- Location of equipment at critical facilities flooding.
- Mooring requirements for floating casinos run aground or sink-in-place.
- Masonry building construction storm surge damage to URM and reinforced masonry, anchoring.
- Metal building construction failure of roofing and cladding.
- Pre-cast, pre-stressed parking garage systems failure of first-level due to surge-induced lateral and uplift forces.



#### **Issues - Infrastructure**

- Performance of flood control structures (e.g., levees, floodwalls) – protection against overtopping (floodwall), scour (armor), seepage (sheet pile penetration).
- Connection of bridge deck sections to piles surge-induced uplift and lateral forces.
- Transmission and communication towers wind-induced failures.
- Location of major electrical generating, transmission and distribution equipment in below-grade facilities in low-lying coastal areas – flooding.
- Anchoring systems for cargo handling cranes in port facilities – failures due to wind (New Orleans) and storm surge (Gulfport).



#### **Issues – Residential Structures**

- Lack of building codes in all areas, especially where design wind speeds exceed 100 mph – adoption of national model building codes.
- Building anchorage displacement from foundation
- Roofing shingles type (architectural versus three-tab shingles), installation, and wind resistance.
- Performance of metal roofing systems flashing, attachment, laminar strength of insulation, adhesion between membrane and insulation, old versus new.
- Performance of porous and non-porous cladding systems wood, brick or masonry versus vinyl or aluminum – rain ingress.
- Undamaged temporary construction portable classrooms.



#### **Process for Recommendations**

- Recommendations will be specific and actionable.
- The recommendations will identify the specific codes and standards affected.
- The recommendations will identify specific agencies with the responsibility for follow through on their implementation.
- NIST is currently considering 26 recommendations as follows:
  - Immediate impact on practice for rebuilding (6)
  - Standards, codes, and practices (9)
  - Further study and research and development (11)



### **Next Steps**

- Complete draft of report received from reconnaissance team on Feb. 27, 2006.
- Draft report currently in review and clearance process.
- Final report planned for release in April 2006.

